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Theory of Magnetostatlc Waves in Moving
Ferrite Films and Applications to
Rotation Rate Sensing

DANIEL D. STANCIL, MEMBER, IEEE

Abstract — A first-order field theory for electromagnetic waves in mov-
ing ferrites and ferrite thin films is presented. The dominant effect of the
motion is found to be the Doppler-shifted frequency observed in the
moving frame. This gives rise to an anomalously large shift in wavenumber
owing to the dispersive nature of the ferrite medium. Because of the large
effect, it is suggested that a moving medium experiment using magneto-
static waves could be used to distinguish between various competing forms
for the dispersion term in the Fresnel-Fizeau coefficient.

The large Fresnel-Fizeau coefficient suggests that magnetostatic waves
could be used to measure relative rotation rates if confined to propagate
around the perimeter of a rotating disk. Since the phase shift would be
established in the time required to propagate around the disk, the response
time could be significantly shorter than conventional tachometers.

An experiment with counterpropagating magnetostatic waves would clar-
ify the effect of a magnetic medium on the magnitude of the Sagnac effect.
Although it should be possible, in principle, to construct an absolute
rotation rate sensor using magnetostatic waves (or more precisely, mag-
netic polaritons), the magnitude of the Sagnac effect is predicted to be the
same as for ordinary electromagnetic waves with the same frequency.
Since the magnitude of the Sagnac phase shift is proportional to fre-
quency, optical interferometers are still preferable.

1. INTRODUCTION

HE USE OF acoustic and magnetostatic surface waves

for rotation rate sensing was first proposed by
Newburgh er al. [1]. For such an application, the waves
would be guided around a circular path on a rotating
medium. The motion of the medium would alter the prop-
agation velocity of the guided waves, thus causing a phase
shift proportional to the rotation rate. Their analysis as-
sumed that the effects of medium motion on both types of
waves could be described in terms of Galilean velocity
addition for nonrelativistic velocities. To evaluate this as-
sumption, a theory of electromagnetic waves in moving
ferrites is required.

If the medium is moving with velocity ¥ relative to an
observer A, then the phase velocity of an electromagnetic
wave in the medium as measured by A is

(1)

where u, is the phase velocity measured by A when V=0
and app is the Fresnel-Fizeau drag coefficient. For a

u=uy+agl
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dispersive medium, the coefficient app can be written [2]
w dn

(@) =1- n(w)} n(w) do

where w is the angular frequency measured by A, the
refractive index n is defined by

n(w) =

(2)

3
“o(‘*’) G)
and ¢ is the velocity of light in free space. Although
derived in the context of the propagation of light in
isotropic dielectrics, (2) is also valid for anisotropic media
at microwave frequencies if (3) is used to define an effec-
tive index of refraction. This point is emphasized in Sec-
tion II, where an alternative but equivalent expression for
app 1s derived in terms of wave phase and group velocities
rather than an index of refraction.

The last term in (2) is present only in dispersive media.
Einstein [2] pointed out that the presence of such a term is
due to the Doppler frequency shift caused by the motion
of the medium. The form of this term may vary, however,
depending on the specific geometry under consideration.
Lerche [3] has also pointed out that several forms of the
dispersion term have appeared in the literature, and that
available experimental data are not precise enough to
distinguish between the various forms. These data are
based on light propagating in water. Since water is not
very dispersive at optical frequencies, the effects of the
dispersion term are small and thus difficult to obtain with
sufficient accuracy. We shall show that for magnetostatic
waves the dispersion term is large and dominates ogp.
Thus, in addition to applications to motion sensing, mea-
surement of the Fresnel-Fizeau effect for magnetostatic
waves may permit a fundamental verification of the form
of the dispersion term.

The general problem of electromagnetic waves in mov-
ing anisotropic media has been considered by several au-
thors [4]-[7]. In Section 1II, we adapt the key features of
these theories to the case of moving ferrites and the guided
modes of thin ferrite films. The results of this analysis are
found to be consistent with the conclusions of Section II.
The magnetostatic limit of the electromagnetic theory is
taken in Section IV, and applications to relative and
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Fig. 1. Geometry and coordinate systems for analysis of electromag-

netic waves in moving ferrites.

absolute rotation rate sensing are discussed in Sections V
and VL

II. FRESNEL-FI1ZEAU COEFFICIENT FOR
DIiISPERSIVE MEDIA

Consider a source with frequency « in frame £ which
launches an electromagnetic wave in a medium which is
moving with velocity ¥ relative to £ (Fig. 1). The frame in
which the medium is stationary is =’. The laws of transfor-
mation for frequency w and wavenumber 8 between the
two systems is (assuming V||8)

w'=v(w—BV) (4)

where vy =[1—(V/c)?]"'/2 The phase velocities in the two
systems are u = w/f and u' =’ /B’

w= y(w’+,3'V)

u’=ilf;zu—~V[1—(u/c)2] 6)
e

and

uzu’+V[1—(u’/c)2] (7)

to first order in V/c.

Let us define the phase velocity function for a stationary
medium as u#y(w). For an observer in X', this function
should apply, though the frequency will be Doppler shifted.
Thus we can write

u' = ug(w)
u
zuo(w)+é’—wO Aw (8)
where «' = w + Aw, and
A Vo %)
w=— + .
up(w)

To obtain the partial derivative in (8), we note that the
reciprocal group velocity can be written

1 1w du,

5=
Ugg Uy Uy dw

(10)

Solving this expression for du,/dw and substituting the

result along with (9) into (8) gives

’=u0(w)—V 1-

(1)

uo(w) J
”go(w)

to first order in V. Substituting this result into (7) and
collecting terms yields the result
ug( )

u=ug(w)+ V{l_ [ uogw) }2_ [1_ e ” (12)

The coefficient app can be obtained by comparing (12)
ug(w)

and (1):
uo(‘*’) 2
“FFZI‘[ : }‘[1‘%0(@)

This expression is equivalent to (2) but is expressed in
terms of phase and group velocities rather than the index
of refraction. Here the last bracketed term is due to
dispersion and vanishes when the phase and group veloci-
ties are equal. This result is valid for anisotropic as well as
isotropic media provided that the phase and group veloci-
ties are parallel or antiparallel and that the direction of the
group velocity does not change with frequency.

| ow

III. SURFACE WAVES IN MOVING FERRITE
THiN FILMS

A. First-Order Minkowski Constitutive Relations

The Minkowski constitutive relations for moving aniso-
tropic medium are of the bianisotropic form [4], [5]

D=¢E+EH (14)
B={-E+u-H (15)

where £ =¢ if the medium is lossless. In general, it may
be possible to decompose the total field vectors into static
and time-varying components. Equations of the form of
(14) and (15) may be written for both components, al-
though the static and dynamic constitutive tensors will
generally be different. For the case of an electrically
isotropic ferrite, the total magnetic field intensity inside
the ferrite is the sum of the static bias field H, and the
dynamic wave field H:

H,.=H,+ H(t)
=Hyb+ H(1). (16)

The dynamic constitutive tensors to first order in ¥/c can
be written [4], [8]

e=el=¢p!l

(17)

ﬁ=.uol-_'/r=:u0[(1+x')l_+i"/l;XI_Xll;g] (18)
-1 - =
§=~[1-em] v xT] (19)

_ 1 _— &
= -V I [T-em] = (20)

Here the primes denote quantities in the moving frame 3,
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and the unprimed quantities apply to frame =, which is at
rest with respect to the source. The susceptibility tensor
elements x’ and «’ are

__ e
(@)= (o)

W' Wiy

(21)

xl

K (o)

where w} = y/poHg, @i, = yiuoM/, and y; =|e’|/m/ is the
gyromagnetic ratio. To rigorously relate the primed quanti-
ties to the unprimed quantities we must use the relativistic
transformations for fields, masses, volume (Lorentz—
Fitzgerald contraction effect), and spin [9]. However, to
first order in V/¢, the only effect is a Doppler shift in
frequency. Thus, for nonrelativistic velocities we have

W= @, (23)
(24)
(25)

In contrast, we assume the permittivity is constant with
frequency so that e/ =e,.

(22)

! J—
Wy = Wy

w'=w—BV.

B. Dispersion Relation for an Infinite Ferrite with V, k
Perpendicular to H,

Substituting (14) and (15) into Maxwell’s curl equations
and eliminating H leads to the wave equation in E for a
bianisotropic medium:

W-E=0 (26)
where the wave matrix W is given by [5]
W=wE+kxI]p [wf-—kxT|-w% (27)

and the field is assumed to have the spatial dependence
exp (ik - r). Substituting (17) for an isotropic dielectric and
keeping only first-order terms in V/c gives

W=ol(kxI)g§-Ept(kxT)]
(kX T)-p Y (kxT)- w%T. (28)

The dispersion relation is now obtained by setting the
determinant of the wave matrix to zero:

detW =0. (29)

Let us consider a nonuniform plane wave propagating
parallel to the medium velocity but perpendicular to the
static magnetic bias field. For definiteness we will assume
the following coordinate system (Fig. 1):

~

b=7%
V=Vp

k=—isaf+Bp, s—+1. (30)

The choice of the sign of s allows consideration of nonuni-
form plane waves either growing or decaying along the + x
axis, while ‘8 is positive-definite. Evaluating the determi-
nant (29) for this specific case leads to two roots, corre-
sponding to the ordinary and extraordinary waves. The

833

dispersion relations for both waves are of the form

wle rest _ 2wBV

c? c?

aZZIBZ_

(31)

where p., is an effective relative permeability given by

[1 - €nueff]

1 for the ordinary wave
(1+x)* = (x)*
(1+x)

Boegr = .
eff for the extraordinary wave.

(32)

Recall that when evaluating x” and «’, the Doppler-shifted
frequency o’ = w — BV must be used. Because of this, (31)
contains higher order terms in V' than is explicitly shown.
The higher order terms can be removed, but at the expense
of complexity. Consistently retaining only first-order terms
m V gives

e uQ) 208V &b
P I-eu+ =251 (39)

&= 2 2
where
1+x 2 k2
(e(?f _ ( O) 0 (34)
1+ x4
2 2
Q x1(1+xo) 2"0"1(12+ Xo) + X1K§ (35)
(1+xo)
and
Wol py
= 36
XO w(z) - OJ2 ( )
0= (37)
2620wy
X1=~ 75 3 (38)
(wf—w )
w0y, | wE + w?
K== __L(_.O_v_,)_ (39)
9 2\2
(wf— )

These quantities are defined such that p.=pQ +
(BV/@)plh, X' = Xo +(BV/w)x,, and &'= Ko+ (BV/w)
to first order in (8V/w). Note that the higher order terms
in p.e are powers of V/u rather than V/c. Since u < ¢
for magnetostatic waves, it is possible that under some
circumstances it is valid to retain the nonlinear terms in
pog while still neglecting nonlinear terms in ¥/c. In most
cases of practical interest, however, the difference between
(31) and (33) is negligible. Since the explicit elimination of
higher powers of V/u results in more complicated expres-
sions, higher order terms will be dropped only when doing
so simplifies the result.

When a=0, (31) and (33) give the dispersion relations
for uniform plane waves in an infinite moving ferrite. For
both a and V equal to 0, the ordinary and extraordinary
wave dispersion relations for an infinite stationary ferrite
are recovered [10]. The ordinary wave is found to be a
TEM wave with the magnetic field parallel to the z axis.
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Because the medium is magnetically saturated along this
direction, there is no small signal susceptibility and hence
no magnetic interaction with the medium. In contrast, the
extraordinary wave is a TE mode with components of the
magnetic field both along x and y. Since the medium does
exhibit small signal susceptibilities along these directions,
the extraordinary wave is characterized by a strong mag-
netic interaction with the ferrite.

The general expression for nonuniform plane waves (eq.
(31)) will be needed in subsection D to obtain the surface
modes of a thin ferrite film.

C. Field Solutions for Extraordinary Nonuniform
Plane Waves

To find the electric field components for extraordinary
nonuniform plane waves, we must examine (26) where the
wave matrix is obtained by substituting the appropriate
form of the dispersion relation (31) into (28). From this it
is found that the only nonvanishing component of the
electric field intensity is E,. Assuming E is known, the
magnetic field intensity can be calculated from

1 - -
H=—p b [kxI-wo]-E. (40)

w
This result is obtained by combining Maxwell’s curl E
equation with the constitutive law (15). Substituting E =
¢E, into (40) shows that H, and H, are the nonvanishing
components of the magnetic field. Because there is only
one electric field component but two magnetic field com-
ponents, we choose to normalize to E,. Thus if the electric
field is specified by

E = Csesa)c-f-lﬁy

(41)

the magnetic field is found to be

1
H = __Qscsesax+lﬁ)'

s 42
e (42)
-1
H, =—R(C,e™ > "F (43)
T Why
where
@+ ) eB—wV[1—€,(1+x)]] — &'[sac® + wVe,x’']
$ C2[(1 4 x/)?.* (K,)Z]
(44)
and

kK[?B — V1=, 1+ x)]]— A+ x')[sac® + wVe, k']
’ A+ x) - (x)]

(45)

The above forms emphasize the symmetry between R, and
Q,. An algebraically simplified form for R, is given below
in (62).

D. Surface Modes of a Thin Ferrite Film

We now turn our attention to the layered structure
shown in Fig. 2. The layers on either side of the ferrite are

y W

—®)— —» X
-d/2 y dr2
€1 £r2 €
Hp=1 E Hg=1
Fig. 2. Ferrite thin film geometry.

assumed to be nonmagnetic dielectrics. Following the usual
approach for boundary value problems, we will write down
general expressions for the guided mode fields in each
region and then match boundary conditions.

The fields in the dielectric region I can be obtained from
(41)—(45) by setting x’= k' = 0 and choosing s = +1 since
decaying solutions are needed as x - — oo, Thus, for re-
gion I:

1 wV
Hy=—B——5(1—¢,)|Cew (46)

X 2
Wkg ¢’
o
Hy=—C e® by (47)
’ whg

_ o x+18y
E,=Cen .

(48)

In region II, the general solution is composed of both
growing and decaying terms:

1
H,=— [Q+C+ e+ 0 _C. e_azx] e

x 49
™ (49)

i
Hy2 = ;‘IL_O[R+C+ e+ R C_ efazx] e"B‘ (50)
Ep=[Cie™ +Cem ] e (51)

where R, and @, are defined as in (44) and (45) with
a=a, and €,=¢,,, and the C’s are constants to be
determined.

Finally. the fields in region III are obtained by setting
x'=k'=0and s=—1:

1 wV
Hy=—|8— 7(1 —€,5) |Cye ¥ B (52)

Wito
Hym =~ e mn iy (53)
) Who
Ey=Cye a¥tiby, (54)

Since the motion is parallel to the boundaries, the
boundary conditions are the same as for stationary media
[11]. Thus we require tangential £ and H to be continu-



STANCIL: THEORY OF MAGNETOSTATIC WAVES

ous at x = £ d /2. Applying the boundary condition on the
electric field gives

Cle—oqd/Z — C+ ef:xzd/z +C_ euzd/Z

C3e—a3d/2 — C+ ea:d/Z +C_ e—azd/Z.

Similarly, requiring H, to be continuous yields

—Cie 92 =R, C, e 4?2+ R _C_e%? (57)

0,C;e” 92 =R C, e®¥?+ R_C_e %%/ (58)

Eliminating C, and C, from (55)-(58) gives a homoge-

neous linear system in the unknown amplitudes C, and

C_. The nontrivial solution is obtained by setting the
determinant of the coefficient matrix to zero. The result is

- (a1+R+)(0‘3_R~) (59)

(0‘1+ R_ )(0‘3_ R+) .
This is the dispersion relation in the laboratory frame for
electromagnetic surface waves propagating in a moving

thin film. For convenience, the parameter definitions are
repeated below.

(55)
(56)

2a,d

)
W, I
2_p2 rii’eff,:
a; =P e

2wBV
2 [1 - ert’“"’eff,t] (60)

(1+x)*~(x)

Prege,s = Megr,3 =1 Hegr = 1+x (61)
k'8 —sa,(1+x)] —wx'V
= [ 2( 2X)]2 (62)
l(1+x) - (x)]

When the medium velodity ¥V is set to zero and media 1
and 3 are taken to be dir, (59) reduces to the dispersion
relation for electromagnetic surface waves in a ferrite layer
obtained by Gerson and Nadan [12]. Electromagnetic
waves guided by ferrite layers have also been discussed for
stationary geometries by Karsono and Tilley [13],
Marchand and Caillé [14], and Caillé and Thibaudeau [15].
These authors refer to the modes by the descriptive term
magnetic polaritons.

Let us define AB as.the change in wavenumber caused
by the motion of the medium as observed in the laboratory
frame; ie., AB=B(w,V)~ B(w,0). This quantity is plot-
ted in Fig. 3 for a medium velocity of =10 m/s and a
typical yttrium iron garnet thin film (see the figure caption
for the film parameters). For large values of 8, the shift is
much larger than would be expected on the basis of a
simple Galilean velocity addition estimate. As will be
emphasized in Section IV, this anomalously large shift is
the result of the highly dispersive nature of the ferrite
medium.

IV. MAGNETOSTATIC LIMIT

The magnetostatic limit is obtained by taking the limit
¢ — o0 in (59)-(62). This gives

af =p?
_Bl—s(+x)]
TA+x)- ()

(63)
(64)

855
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Fig. 3 Shift in wavenumber as observed in the laboratory frame caused
by a film velocity of 10 m/s. Other parameters for the calculation are
Hy=637 kA/m (80 Oe), M;=140 kA/m (1760 G), v,/2n =
28 GHz/T, d =15 p, €,1 =1, €,, =17, and €,; =12.

Substituting these equations and the definitions of «’ and
x’ from (21) and (22) and simplifying leads to the result

wy? W
(w’)2=[co0+-—%] .

—2Bd
2 4 )

(65)

This is just -the Damon and Eshbach dispersion rela-
tion [16] for magnetostatic surface waves but with the
Doppler-shifted frequency «’= w — BV. This is reasonable
since the magnetoelectric tensors (19) and (20) vanish in
the limit ¢ — oo, leaving the Doppler shift (25) as the only
first-order effect of the motion. Writing 8= f,+ AfS and
explicitly keeping only first-order terms leads to the ex-
pression

4w,V e*ho?

A =
A w3, d

(66)

where 8, satisfies (65) with V'=0. Equation (66) can be
written more compactly in terms of the wave group veloc-
ity for a stationary medium. Setting «’ = w in (65) and
differentiating with respect to f, gives

2
wiyd o260d
4w

(67)

“go(w) =

Substituting this into (66) gives

%
AIBZ—IBO“'_~

(68)
Lz

Thus the fractional change in the wavenumber is equal
in magnitude to the ratio of the medium velocity to the
wave group velocity in a stationary medium. Although
derived specifically for the case of magnetostatic surface
waves, it is shown in the Appendix that (68) is valid for all
magnetostatic modes. The anomalously large values of AS
observed in the previous section are explained by the fact
that the wave group velocity goes asymptotically to 0 for
large B,. Equation (68) is indistinguishable from the full
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path length = 2rRn

Fig 4. Geometry for analyzing the relative rotation rate sensor.

electromagnetic solution from Section III on the scale of
Fig. 3.

It is also useful to obtain the magnetostatic limit of apg
from (13). Taking the limit ¢ — oo yields

up(w)
Qpp = ——. 69
FF ugo ( ® ) ( )

Although both the phase and group velocities of the mag-
netostatic waves vanish in the limit of arbitrarily large §,,
the group velocity vanishes more quickly. As a result, apg
can be much larger than unity owing to the highly disper-
sive nature of the ferrite film. It is straightforward to show
that (69) is equivalent to (68).

V. RELATIVE ROTATION RATE SENSING
As proposed by Newburgh et al. [1], magnetostatic sur-

face waves guided around a circular path could be used to
measure the relative rotation rate between the medium
guiding the wave and an observer. The operation of such a
sensor can be understood with the aid of Fig. 4. It is
assumed that the wave is confined to a narrow region near
the perimeter of the disk with radius R and propagates
only in the clockwise (CW) direction (such nonreciprocal
behavior is characteristic of magnetostatic surface waves
[16]). If the radius R is large compared with the width of
the confinement region, the results of the previous section
can be used to estimate the change in phase caused by the
rotation of the disk.! If the disk rotates CW with angular
velocity €, the change in phase will be ’
Ap=n2aRAB
_ 2nAB, 0

u

(70)
g0

where 7 is the path length expressed as a fraction of the
circumference and A is the area enclosed by the path.
Using typical values of 8,=100 cm™, 4=3 cm’, u o=

'we also neglect intrinsic changes in the medium caused by the
rotation, such as the Barnett effect [17].

2.57x107 ecm/s, =100 7 rad/s (3000 rpm), and n=1
gives a phase shift of 0.42°. For f,=400 cm™!, u,,=
7.41x10% cm /s, A¢ becomes 5.83°.

The original argument in favor of magnetostatic and
acoustic rotation rate sensors was greater sensitivity than
that obtained with optical sensors based on the Sagnac
effect [1]. According to this argument, the enhanced sensi-
tivity results from the comparatively small wavelengths
and phase velocities of these waves. However, as also
pointed out by Newburgh et «l. [1], the optical sensors are
capable of sensing absolute rotation rates whereas the
increased sensitivity for the alternative devices was pre-
dicted only for relative rotation rate sensing. Hence mag-
netostatic wave relative rotation rate sensors should not be
compared with optical Sagnac devices, but with existing
rotary tachometers. Also, the results of this section show
that the magnitude of the phase shift is determined not by
the wavelength and phase velocity alone, but by the result-
ing Doppler frequency shift combined with the dispersive
nature of the ferrite. The usefulness of magnetostatic waves
for absolute rotation rate sensing is discussed in the next
section.

Briefly, there are three types of rotary tachometers in
common use: the d¢ tachometer, ac tachometer, and digital
pulse tachometer. In contrast with these devices, which
produce output signal levels measured in volts, the pro-
posed magnetostatic wave device would require the detec-
tion of small velocity dependent effects. Thus when com-
pared with existing tachometers, enhanced sensitivity no
longer seems a valid argument in favor of the magneto-
static wave device, However, both dc¢ and ac tachometers
suffer from the presence of rotation subharmonic ripple
caused by the discrete number of armature windings. The
addition of time constants to filter out these ripples can
significantly affect the stability of high-performance sys-
tems. As an example, consider a dc tachometer with M
commutations per revolution. The minimum time neces-
sary to determine the average dc output is one period of
the superimposed ripple. Thus the minimum response time
(i.e., the lower limit on the time required to obtain the
desired measurement) is estimated by

1
- MS

where S is the rotation rate in rev/s.

Digital tachometers produce a fixed number of output
pulses per revolution. These pulses can be produced me-
chanically, magnetically, or optically. The rotation rate can
be determined by counting the number of pulses in a given
interval or by timing the duration of a single pulse.? Thus
the minimum response time is estimated by

1
NS
where N is the number of pulses per revolution.

(71)

T

(72)

T

*In practice, the duration of several pulses would have to be averaged
to obtain a satisfactory result. The duration of a single pulse can be
considered to be the minimum response time of an ideal device.
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10000
1000 k dc tachometer (1)
100
:gg; 10t ™
e _ digital tachometer (1, )
b \
1EF MSW tachometer
.01 : :
1 10 100 1000
S (rev/s)
Fig. 5. Comparison of tachometer minimum response times. 7 and 7,

were calculated from (71) and (72) respectively, with M =80 and
N = 5000. The magnetostatic wave response is based on propagation
around a disk with 4 =3 cn?, o =2.57x10" cm/s, and =1

In contrast to the above devices, the minimum response
time of the magnetostatic wave device does not vary with
rotation rate but is determined by the time required for
energy to propagate thorugh the device (i.e., the group
delay). For the parameters in the previous numerical esti-
mates, the response time would be about 400 ns or less.

Estimated minimum response times for conventional
analog (dc) and digital tachometers as well as for the
proposed magnetostatic wave device are compared in Fig.
5. (In practice, all the devices may require additional
averaging to obtain the desired measurement accuracy.)
The magnetostatic wave device has the potential for be-
ing significantly faster for rotation rates less than about
1000 rev/s (60000 rpm) for the particular parameters
used. Such a device could contribute significantly to the
stability of high-performance systems where high speed
control is paramount.’ Orientation-dependent effects from
such things as mechanical wobble and magnetocrystalline
anisotropy could, however, prevent this advantage from
being realized [18], [19]. If the propagation path does not
involve the entire circumference, then orientation-depen-
dent effects will appear as different portions of the film are
rotated into the propagation path. The effects can be due
to changes in crystal orientation or to inhomogeneities in
the film. Tt may be possible to minimize these effects by
allowing the waves to propagate completely around the
disk (n=1). The phase shift should then not depend on
orientation since no new portions of the film are brought
into the path as the film is rotated.

VI. ABSOLUTE ROTATION RATE SENSING

To measure absolute rotation rates, an interferometer is
needed in which electromagnetic waves propagate in oppo-
site directions around a ring. Owing to the Sagnac effect
[20], there will be a phase difference between the two

30ther factors such as the speed of the controller also affect system
stability. The new device would therefore be most important for systems
where the tachometers are the limiting factors.
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Fig. 6. Geometry for analyzing absolute rotation rate sensor. () Path
of CW wave. (b) Path of CCW wave.

waves proportional to the rotation rate of the interferome-
ter. Just as in the case of the Fresnel-Fizeau coefficient,
the Sagnac effect can be described in terms of phase and
group velocities rather than indices of refraction.

Referring to Fig. 6, consider a disk of radius R rotating
with angular rate @ containing waves propagating in both
the clockwise (CW) and counterclockwise (CCW) direc-
tions. As before, we assume the energy is confined to a
narrow region near the radius of the disk. In the laboratory
(nonrotating) frame, the wavenumber of the CW wave is
B, — |AB| and the wavenumber of the CCW wave is By +
|AB|, where B, is the wavenumber in a stationary medium.
After traveling around the ring and returning to the point
at which they started, the phase shifts of the CW and
CCW waves are

¢cw = [Bo— 1ABI][27R + 48] (73)

dcew = [Bo+ 1ABI[27R — AS, ]. (74)

The phase difference between the two paths to lowest
order in V/c is

A¢ = B,[AS,; + AS,] —4|AB|7R. (75)

Since the ratio of the distances traveled by two objects in a
time ¢ is equal to the ratio of their velocities, AS; and AS,
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are approximated to lowest order by

QR
AS;=AS,=—2aR.
Ugg

(76)

The definition of app in (1) can be used to express AfS in
terms of the medium velocity. The result to lowest order is

[AB] = appBoR / uy. (77)
Combining (77) and (76) with (75) gives
43,824 u
Agp = o [1—aFF—gO]
u

Uy 0

(78)

where A is the area enclosed by the guided wave path.
Substituting (13) for the Fresnel-Fizeau coefficient ayy
and simplifying gives the Sagnac phase shift for an inter-
ferometer with a corotating dispersive medium (i.e., a
dispersive medium rotating with the interferometer):

400A
)

Ap =

(79)

This is easily recognized as the Sagnac phase shift in the
absence of a corotating medium. The fact that a corotating
dielectric medium has no effect on the Sagnac phase shift
has been pointed out by several authors [20], [21]. How-
ever, there is disagreement in the literature about the effect
of a corotating magnetic medium. Yildiz and Tang [22]
considered the case of a corotating scalar magnetic medium
and concluded that the free-space phase shift (identical
with (79)) should be multipled by the relative permeability.
In contrast, Anderson and Ryon [23] considered the same
case and concluded that the presence of a corotating scalar
magnetic medium would have no effect on the phase shift.
The results presented here agree with Anderson and Ryon
and, in addition, should be valid for an arbitrary isotropic
or anisotropic magnetic medium provided only that the
phase and group velocities are collinear. To the author’s
knowledge, the disagreement regarding the effect of a
magnetic medium has not been experimentally resolved.
This is because Sagnac interferometers are usually con-
structed for optical frequencies, where magnetic effects are
negligible. A microwave measurement using magnetostatic
waves should make it possible to distinguish between the
competing theories, however, owing to a large effective
permeability.*

Newburgh er al. [1], have argued that an interferometer
using magnetostatic surface waves could not be used to
detect absolute rotations because of the way in which the
wave velocity depends on the velocity of the medium.
Indeed, if the magnetostatic form for age (eq. (69)) is
substituted into (78) the Sagnac phase shift vanishes. Rig-
orously speaking, however, magnetostatic waves are ex-
traordinary electromagnetic waves and do exhibit the
Sagnac effect when the correct form for app is used. An
optical interferometer is still preferable from a practical
standpoint, however, because the large difference between

*The possibility of using microwave measurements to resolve this 1ssue
has also been pointed out by Post [24].

microwave and optical frequencies results in optical phase
shifts that are larger by four to five orders of magnitude
than a microwave interferometer of the same area.

VIL

The problem of waves propagating in moving ferrites
has been considered from several viewpoints. First, the
Fresnel-Fizeau drag coefficient was obtained for the case
of a general anisotropic dispersive medium provided only
that the phase and group velocities are collinear. The result
was expressed in terms of phase and group velocities
rather than an index of refraction to emphasize that its
validity is not limited to optical frequencies.

Next, a first-order ficld theory for electromagnetic waves
in moving ferrites was presented. The dispersion relation
for nonuniform plane waves in an infinite medium was
first derived, then applied to the boundary value problem
of guided waves in a moving ferrite film. The magneto-
static limit was then extracted and shown to be in excellent
agreement with the full electromagnetic theory. The domi-
nant effect of the motion is found to be the Doppler-shifted
frequency observed in the moving frame. This gives rise to
an anomalously large shift in wavenumber owing to the
dispersive nature of the ferrite medium. Because of the
large effect, it is suggested that a moving medium experi-
ment using magnetostatic waves could be used to distin-
guish between various competing forms for the dispersion
term in the Fresnel-Fizeau coefficient.

Finally, the results of the field theory are applied to
relative and absolute rotation rate sensing. In both appli-
cations the waves are considered to be confined to a
narrow region near the edge of a rotating ferrite thin film.
The large Fresnel-Fizeau coefficient suggests that magne-
tostatic waves could be used to measure relative rotation
rates. Since the phase shift would be established in the
time required to propagate around the disk, the response
time could be significantly shorter than conventional
tachometers. Although it should be possible, in principle,
to construct an absolute rotation rate sensor using magne-
tostatic waves (or, more precisely, magnetic polaritons),
the magnitude of the Sagnac effect is the same for magne-
tostatic waves as for ordinary electromagnetic waves with
the same frequency. Since the magnitude of the Sagnac
phase shift is proportional to frequency, optical interfer-
ometers are still preferable because of the much higher
frequency.

SUMMARY AND CONCLUSIONS

APPENDIX

In general, the dispersion relation for magnetostatic
waves can be written in the form

F(w,,B,V)=O. (A1)
The solution to this equation can be approximated by a
Taylor series for small V:

Ip

Blw, V) =B(w,0)+ v

14 (A2)

V=0
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Thus

AB=— V.
A 14

The quantity 38/9V can be obtained from (A1) by implicit
differentiation:

(A3)

B dF/aV

vV AF/p’
To evaluate dF/dV, we now make the assumption that the
dependence of F on w and V is of the form F(w,V)=
F(w — BV). As discussed in Section IV, this is valid for all

magnetostatic modes propagating parallel to the motion of
the medium. Thus
dF dw

JF dF
W aw v - Paa

where «’ = w — 8V. Substituting this result into (A4) and
simplifying gives

(A4)

(A5)

(46)

Substituting this result into (A3) yields (68), as desired.
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