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Theory of Magnetostatic Waves in Moving
Ferrite Films and Applications to

Rotatj.on Rate Sensing

DANIIEL D. STANCIL, &MBER, IEEE

Abstract —A first-order field theory for electromagnetic waves in mov-

ing ferrites and ferrite thin films is presented. The dominant effect of the

motion is found to be the Doppler-shifted frequency observed in the

moving frame. This gives rise to an anomalously large shift in waveuumber

owing to the dispersive nature of the ferrite medium. Because of the large

effect, it is suggested that a moving medium experiment using magneto-

static waves could be used to distinguish between various competing forms

for the dispersion term in the Fresnel-Fizeau coefficient.

The large Fresnel-Fizeau coefficient suggests that magnetostatic waves

could be used to measure relative rotation rates if confined to propagate

around the perimeter of a rotating dkk. Since the phase drift would be

established in the time required to propagate around the disk, the response

time could be significantly shorter than conventional tachometers.

An experiment with counterpropagating magnetostatic waves would clar-

ify the effect of a magnetic medium on the magnitnde of the Sagnac effect.

Although it should be possible, in principle, to construct an absolute

rotation rate sensor using magnetostatic waves (or more precisely, mag-

netic polaritons), the magnitude of the Sagnac effect is predicted to be the

same as for ordinary electromagnetic waves with the saline frequency.

Since the magnitude of the Sagnac phase shift is proportional to fre-

quency, optical interferometers are still preferable.

I. INTRODUCTION

T HE USE OF acoustic and magnetostatic surface waves

for rotation rate sensing was first proposed by

Newburgh et al. [1]. For such an application, the waves

would be guided around a circular path on a rotating

medium. The motion of the medium would alter the prop-

agation velocity of the guided waves, thus causing a phase

shift proportional to the rotation rate. Their analysis as-

sumed that the effects of medium motion on both types of

waves could be described in terms of Galilean velocity

addition for nonrelativistic velocities. To evaluate this as-

sumption, a theory of electromagnetic waves in moving

ferrites is required.

If the medium is moving with velocity V relative to an

observer A, then the phase velocity of an electromagnetic

wave in the medium as measured by A is

u=uo+aFF v (1)

where UO is the phase velocity measured by A when V = O

and a~~ is the Fresnel–Fizeau drag coefficient. For a
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dispersive medium, the coefficient a~~ can be written [2]

[1
2

a,.(o) =l- -& +%: (2)

where a is the angular frequency measured by A, the

refractive index n is defined by

~(u).~ (3)
Uo(ti)

and c is the velocity of light in free space. Although

derived in the context of the propagation of light in

isotropic dielectrics, (2) is also valid for anisotropic media

at microwave frequencies if (3) is used to define an effec-

tive index of refraction. This point is emphasized in Sec-

tion II, where an alternative but equivalent expression for

a~~ is derived in terms of wave phase and group velocities

rather than an index of refraction.

The last term in (2) is present only in dispersive media.

Einstein [2] pointed out that the presence of such a term is

due to the Doppler frequency shift caused by the motion

of the medium. The form of this term may vary, however,

depending on the specific geometry under consideration.

Lerche [3] has also pointed out that several forms of the

dispersion term have appeared in the literature, and that

available experimental data are not precise enough to

distinguish between the various forms. These data are

based on light propagating in water. Since water is not

very dispersive at optical frequencies, the effects of the

dispersion term are small and thus difficult to obtain with

sufficient accuracy. We shall show that for magnetostatic

waves the dispersion term is large and dominates a~~.

Thus, in addition to applications to motion sensing, mea-

surement of the Fresnel–Fizeau effect for magnetostatic

waves may permit a fundamental verification of the form

of the dispersion term.

The general problem of electromagnetic waves in mov-

ing anisotropic media has been considered by several au-

thors [4]–[7]. In Section III, we adapt the key features of

these theories to the case of moving ferrites and the guided

modes of thin ferrite films. The results of this analysis are

found to be consistent with the conclusions of Section II.

The magnetostatic limit of the electromagnetic theory is

taken in Section IV, and applications to relative and
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Fig. 1. Geometry and coordinate systems for anafysis of electromag-

netic waves in moving ferrites.

absolute rotation rate sensing are discussed in Sections V

and VI.

II. FRESNEL–FIZEAU COEFFICIENT FOR

DISPERSIVE MEDIA

Consider a source with frequency o in frame X which

launches an electromagnetic wave in a medium which is

moving with velocity V relative to X (Fig. 1). The frame in

which the medium is stationary is 2’. The laws of transfor-

mation for frequency o and wavenumber O between the

two systems is (assuming Vll~)

tJ=y(@–pv) ti=y(o’+p’v)

where y = [1 —(V/c) 2] – 1/2. The phase velocities in

systems are u = u//? and u’= w’/~’:

and

u = u’+ v[l–(u’/c)2]

to first order in V/c.

(4)

(5)

the two

(6)

(7)

Let us define the phase velocity function for a stationary

medium as UO(o ). For an observer in Z’, this function

should apply, though the frequency will be Doppler shifted.

Thus we can write

u’= UO((J’)

where u’= u + Au, and

UP’
Ati=– —+ O(V2).

2.4.(0)

(8)

(9)

To obtain the partial derivative in (8), we note that the

reciprocal group velocity can be written

11 u duo
—=. ___
Ugo U. u: da ‘

Solving this expression for d uO/do and

(lo)

substituting the

result along with (9) into (8) gives

[

Uo(ti)
U’=uo(u)–v l–

Ugo(lo)
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(11)

to first order in V. Substituting this result into (7) and

collecting terms yields the result

[ [W+*]]. (1,,
U=uo(cd)+v l–

The coefficient a~~

and (l):

aFF=l —

can be obtained by comparing (12)

This expression is equivalent to (2) but is expressed in

terms of phase and group velocities rather than the index

of refraction. Here the last bracketed term is due to

dispersion and vanishes when the phase and group veloci-

ties are equal. This result is valid for anisotropic as well as

isotropic media provided that the phase and group veloci-

ties are parallel or antiparallel and that the direction of the

group velocity does not change with frequency.

III. SURFACE WAVES IN MOVING FERRITE

THIN FILMS

A. First-Order Minkowski Constitutive Relations

The Minkowski constitutive relations for moving aniso-

tropic medium are of the bianisotropic form [4], [5]

D=<. E+~.H (14)

where ~t = ~ if the medium is lossless. In general, it may

be possible to decompose the total field vectors into static

and time-varying components. Equations of the form of

(14) and (15) may be written for both components, al-

though the static and dynamic constitutive tensors will

generally be different. For the case of an electrically

isotropic ferrite, the total magnetic field intensity inside

the ferrite is the sum of the static bias field Ho and the

dynamic wave field H

HT=Ho+H(t)

=Ho$+ H(t). (16)

The dynamic constitutive tensors to first order in V/c can

be written [4], [8]

[=$[z-w]”[vxf] (19)

(20)

Here the primes denote quantities in the moving frame 22’,
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and the unprimed quantities apply to frame Z, which is at

rest with respect to the source. The susceptibility tensor

elements x’ and K’ are

(,d’u~
~?=

(tog)’-(d)’

(21)

(22)

where u~ = y#OH;, ti~ = y& OM,’, and y; = le’1/m: is the

gyromagnetic ratio. To rigorously relate the primed quanti-

ties to the unprimed quantities we must use the relativistic

transformations for fields, masses, volume (Lorentz–

Fitzgerald contraction effect), and spin [9]. However, to

first order in V,/c, the only effect is a Doppler shift in

frequency. Thus, for nonrelativistic velocities we have

(JG= 00 (23)

u~ = UM (24)

cl-l= u-~v. (25)

In contrast, we assume the permittivity is constant with

frequency so that ~j = (,.

B. Dispersion Relation for an Infinite Ferrite with ~ k

Perpendicular to Ho

Substituting (14) and (15) into Maxwell’s curl equations

and eliminating H leads to the wave equation in E for a

bianisotropic medium:

~.E=O (26)

where the wave matrix ~ is given by [5]

~= [@+k Xi]. j@[of-kXf]-u2E (27)

and the field is assumed to have the spatial dependence

exp ( ik. r). Substituting (17) for an isotropic dielectric and

keeping only first-order terms in V/c gives

W=ti[(k xi). ~-l. f- E”~-l”(kx f)]

-(k Xi)-~-l(k Xi)- LJ’,’I. (28)

The dispersion relation is now obtained by setting the

determinant of the wave matrix to zero:

det~=O. (29)

Let us consider a nonuniform plane wave propagating

parallel to the medium velocity but perpendicular to the

static magnetic bias field. For definiteness we will assume

the following coordinate system (Fig. 1):

i=f

v=v-

k = – isa;+~j, S=+l. (30)

The choice of the sign of s allows consideration of nonuni-

form plane waves either growing or decaying along the + x

axis, while @ is positive-definite. Evaluating the determi-

nant (29) for this specific case leads to two roots, corre-

sponding to the ordinary and extraordinary waves. The

dispersion relations for both waves are of the form

‘Zc YPeff 2@v
lx2=/32–––

c’
~[1 – ‘rP.ff 1 (31)

where IJ,ff is an effective relative permeability given by

{

1 for the ordinary wave

Peff = (1+ X’)’- (K’)’

(1+ x’)
for the extraordinary wave.

(32)

Recall that when evaluating x’ and K’, the Doppler-shifted

frequency u’= u – ~V must be used. Because of this, (31)

contains higher order terms in V than is explicitly shown.

The higher order terms can be removed, but at the expense

of complexity. Consistently retaining only first-order terms

in V gives

where

(1) _ X1(l+ XO)2–2KOK1(1+ XO)+ X#;
P’eff –

(1+ XO)2

and

(34)

(35)

(36)

(37)

(38)

(39)

These quantities are defined such that P,ff = p~~ +

(PJ?’0)1-LU1, x’= xO+(~V/O)X,, and K’= Ko+(BV/O)K1
to first order in (/3 V/u). Note that the higher order terms
in p ~ff are powers of V/u rather than V/c. Since u << c

for magnetostatic waves, it is possible that under some

circumstances it is valid to retain the nonlinear terms in

P.ff while still neglecting nonlinear terms in V/c. In most
cases of practical interest, however, the difference between

(31) and (33) is negligible. Since the explicit elimination of

higher powers of V/u results in more complicated expres-

sions, higher order terms will be dropped only when doing

so simplifies the result.

When a = O, (31) and (33) give the dispersion relations

for uniform plane waves in an infinite moving ferrite. For

both a and V equal to O, the ordinary and extraordinary

wave dispersion relations for an infinite stationary ferrite

are recovered [10]. The ordinary wave is found to be a

TEM wave with the magnetic field parallel to the z axis.
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Because the medium is magnetically saturated along this

direction, there is no small signal susceptibility and hence

no magnetic interaction with the medium. In contrast, the

extraordinary wave is a TE mode with components of the

magnetic field both along x and y. Since the medium does

exhibit small signal susceptibilities along these directions,

the extraordinary wave is characterized by a strong mag-

netic interaction with the ferrite.

The general expression for nonuniform plane waves (eq.

(31)) will be needed in subsection D to obtain the surface

modes of a thin ferrite film.

C. Field Solutions for Extraordinary Nonuniform

Plane Waves

To find the electric field components for extraordinary

nonuniform plane waves, we must examine (26) where the

wave matrix is obtained by substituting the appropriate

form of the dispersion relation (31) into (28). From this it

is found that the only nonvanishing component of the

electric field intensity is E,. Assuming E is known, the

magnetic field intensity can be calculated from

This result is obtained by combining Maxwell’s curl E

equation with the constitutive law (15). Substituting E =

tEz into (40) shows that H.X and Hy are the nonvanishing

components of the magnetic field. Because there is only

one electric field component but two magnetic field com-

ponents, we choose to normalize to E,. Thus if the electric

field is specified by

E,, = C, e’”’ ~ ‘p? (41)

the magnetic field is found to be

HX, = ~ Q&es”X+l@~ (42)

HV~ = ‘R,C, es”’” lDJ
up ()

(43)

where

(1+ x’)[c’~ – @v[l- cr(l+ x’)]] - K’[sac’ + @v,, K’]
Q,=

C2[(1+X’)2–(K’)2]

(44)

and

~ = “[cz~ – ‘V[l– C,(1+ x’)]] ‘(l+ x’)[~d + ti~~,K’]
>

C*[(l + X’)2 – (K’)2]

(45)

The above forms emphasize the symmetry between R, and

Q,. An algebraically simplified form for R, is given below

in (62).

D. Surface Modes of a Thin Ferrite Film

We now turn our attention to the layered structure

shown in Fig. 2. The layers on either side of the ferrite are

I

-d12

&rl

pr, = 1

1
z

II

Y

&
r2

ii,

Ill

~x
d/2

&r3

pr3 = 1

Fig. 2. Ferrite thin film geometry.

assumed to be nonmagnetic dielectrics. Following the usual

approach for boundary value problems, we will write down

general expressions for the guided mode fields in each

region and then match boundary conditions.

The fields in the dielectric region I can be obtained from

(41)-(45) by setting X’= K’ = O and choosing s = + 1 since

decaying solutions are needed as x - – cc. Thus, for re-

gion I:

Hyl = ~ q e~l.~+@Y (47)
~P o

E,l = Cl ea’x+z~~. (48)

In region II, the general solution is composed of both

growing and decaying terms:

HXZ= ‘[Q+C+ e“z-’+ Q_C_ e-”,-’) e’~ (~~)
~P o

HY2 = – ~[R+C+ e“z’ -t R_ C’_ e-”zx] e’p’ (50)
Wpo

E,z = [C+ es’-’+ C_ e-”’-’] e’~’ (51)

where R, and Q, are defined as in (44) and (45) with

lY=LY~ and E, =Eyz, and the C‘s are constants to be

determined.

Finally, the fields in region 111 are obtained by setting

X’=K’=oands= -l:

H,XJ=
[ 1& 8–;:(1–,,3)c3e-a3.x+,L?Y(52)

ia3
Hy3=– — c3e-a3x+lB,

Up o
(53)

EZ3 = C3 e-%y+i? (54)

Since the motion is parallel to the boundaries, the

boundary conditions are the same as for stationary media

[11]. Thus we require tangential E and H to be contiriu-
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ous at x = + d/2. Applying the boundary condition on the

electric field gives

cle-a’d/2 = c+ ~-%d/2 ~ c_ ~.,d/2 (55)

C3e-”’d/2 = C+ eU’d/2 + C e-a’d/2.— (56)

Similarly, requiring Hy to be continuous yields

– alCl e ‘“id/2 = R.C. e-”Zd/2 + R_C_ e“zd/2 (57)

C13C3e ‘“’d/z = Rhh~ e“’d/2 -t R C e-”’d/2. (58)-—

Eliminating Cl and C3 from (55)–(58) gives a homoge-

neous linear system in the unknown amplitudes C+ and

C_. The nontrivial solution is obtained by setting the

determinant of the coefficient matrix to zero. The result is

e2a,d _ (~I+R+)(W~-)
‘(a1+R_)(a3-R+)”

(59)

This is the dispersion relation in the laboratory frame for

electromagnetic surface waves propagating in a moving

thin film. For convenience, the parameter definitions are

repeated below.

‘26rlPeff, i
a;=~~–

C2 -

2@v
-#l-wed

(1+ /)2- (fc’)2
Peff, z ‘Peff,3 ‘1 Peff,2 =

1+X’

~ = c2[0 –sa2(l+ #)] – OxC’v
s

C2[(1 +, X’)2– (K’)2] “

(60)

(61)

(62)

When the medium velocity V is set to zero and media 1

and 3 are taken to be air, (59) reduces to the dispersion

relation for electromagnetic surface waves in a ferrite layer

obtained by Gerson and Nadan [12]. Electromagnetic

waves guided by ferrite layers have also been discussed for

stationary geometries by Karsono and Tilley [13],

Marchand and Cail16 [14], and Cail16 and Thibaudeau [15].

These authors refer to the modes by the descriptive term

magnetic polaritons.

Let us define A/? as,the change in wavenumber caused

by the motion of the tnedium as observed in the laboratory

frame; i.e., AD = /?(,Q,,V) – fl(o, O). This quantity is plot-

ted in Fig. 3 for a medium velocity of V= 10 m/s and a

typical yttrium iron garnet thin film (see the figure caption

for the film parameters). For large values of ~, the shift is

much larger than would be expected on the basis of a

simple Galilean velocity addition estimate. As will be

emphasized in Section IV, this anomalously large shift is

the result of the highly dispersive nature of the ferrite

medium.

IV. MAGNETOSTATIC LIMIT

The magnetostatic limit is obtained by taklmg the limit

c ~ ec in (59)–(62). This gives

~;=pz (63)

R = fl[K’-S(l+ x’)]

“ (1+ X’)2-(K’)2 “

(64)

frequency (GHz)
1.2 1.6 2.0 2.4

0.000 ‘

z
E -0.005 -
G
d
&

$ -0.010 -

-0.015
,/

o 10 20 30 40 50 60
pO(rad/mm)

Fig. 3 Shift in wavenumber as observed in the laboratory frame caused
by a film velocity of 10 m/s, Other parameters for the calculation are
HO= 6,37 kA/m (80 Oe), M, =140 kA/m (1760 G), -yg/2n =

28 GHz/T, d =15 p, Crl =1, C,j =17, and C,3 =12.

Substituting these equations and the definitions of K’ and

X’ from (21) and (22) and simplifying leads to the result

(a’)’= [o,+~]’- *e-’pd. (65)

This is just the Damon and Eshbach dispersion rela-

tion [16] for magnetostatic surface waves but with the

Doppler-shifted frequency o’= ti – ~V. This is reasonable

since the magnetoelectric tensors (19) and (20) vanish in

the limit c -+ co, leaving the Doppler shift (25) as the only

first-order effect of the motion. Writing /3= PO-t A/3 and

explicitly keeping only first-order terms leads to the ex-

pression

46.@ OVe2P0d
Afi=– (66)

c&d

where & satisfies (65) with V = O. Equation (66) can be

written more compactly in terms of the wave group veloc-

ity for a stationary medium. Setting u’= u in (65) and

differentiating with respect to & gives

(67)

Substituting this into (66) gives

A~=–&:. (68)
g

Thus the fractional change in the wavenumber is equal

in magnitude to the ratio of the medium velocity to the

wave group velocity in a stationary medium. Although

derived specifically for the case of magnetostatic surface

waves, it is shown in the Appendix that (68) is valid for all

magnetostatic modes. The anomalously large values of LB

observed in the previous section are explained by the fact

that the wave group velocity goes asymptotically to O for

large /3.. Equation (68) is indistinguishable from the full
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path length = 27TRq

F1g 4. Geometry for anafyzing the relative rotation rate sensor.

electromagnetic solution from Section III on the scale of

Fig. 3.

It is also useful to obtain the magnetostatic limit of a~~

from (13). Taking the limit c ~ cc yields

UO(6J)
(69)

aFF= ago(o) “

Although both the phase and group velocities of the mag-
netostatic waves vanish in the limit of arbitrarily large PO,

the group velocity vanishes more quickly. As a result, ff~F

can be much larger than unity owing to the highly disper-

sive nature of the ferrite film. It is straightforward to show

that (69) is equivalent to (68).

V. RELATIVE ROTATION RATE SENSING

As proposed by Newburgh et al. [1], magnetostatic sur-

face waves guided around a circular path could be used to

measure the relative rotation rate between the medium

guiding the wave and an observer. The operation of such a

sensor can be understood with the aid of Fig. 4. It is

assumed that the wave is confined to a narrow region near

the perimeter of the disk with radius R and propagates

only in the clockwise (CW) direction (such nonreciprocal

behavior is characteristic of magnetostatic surface waves

[16]). If the radius R is large compared with the width of

the confinement region, the results of the previous section

can be used to estimate the change in phase caused by the

rotation of the disk. 1 If the disk rotates CW with angular

velocity Q, the change in phase will be

A4=q2TRAp

2qA~0
.— —a (70)

Ugo

where ~ is the path length expressed as a fraction of the

circumference and A is the area enclosed by the path.

Using typical values of & = 100 cm-1, A = 3 cm2, U80 =

1We also neglect intrinsic changes in the medium caused by the

rotation, such as the Barnett effect [17].

2.57 X 107 cm/s, Q = 100 n rad/s (3000 rpm), and q = 1

gives a phase shift of 0.42°. For /30= 400 cm-1, ugO=

7.41 X 106 cm/s, A+ becomes 5.83°.

The original argument in favor of magnetostatic and

acoustic rotation rate sensors was greater sensitivity than

that obtained with optical sensors based on the Sagnac

effect [1]. According to this argument, the enhanced sensi-

tivity results from the comparatively small wavelengths

and phase velocities of these waves. However, as also

pointed out by Newburgh et al. [1], the optical sensors are

capable of sensing absolute rotation rates whereas the

increased sensitivity for the alternative devices was pre-

dicted only for relatiue rotation rate sensing. Hence mag-

netostatic wave relative rotation rate sensors should not be

compared with optical Sagnac devices, but with existing

rotary tachometers. Also, the results of this section show

that the magnitude of the phase shift is determined not by

the wavelength and phase velocity alone, but by the result-

ing Doppler frequency shift combined with the dispersive

nature of the ferrite. The usefulness of magnetostatic waves

for absolute rotation rate sensing is discussed in the next

section.

Briefly, there are three types of rotary tachometers in

common use: the dc tachometer, ac tachometer, and digital

pulse tachometer. In ccmtrast with these devices, which

produce output signal levels measured in volts, the pro-

posed magnetostatic wave device would require the detec-

tion of small velocity dependent effects. Thus when com-

pared with existing tachometers, enhanced sensitivity no

longer seems a valid argument in favor of the magneto-

static wave device. However, both dc and ac tachometers

suffer from the presence of rotation subharmonic ripple

caused by the discrete number of armature windings. The

addition of time constants to filter out these ripples can

significantly affect the stability of high-performance sys-

tems. As an example, consider a dc tachometer with M

commutations per revolution. The minimum time neces-

sary to determine the average dc output is one period of

the superimposed ripple. Thus the minimum response time

(i.e., the lower limit on the time required to obtain the

desired measurement) is estimated by

1

‘1= Ms
(71)

where S is the rotation rate in rev/s.

Digital tachometers produce a fixed number of output

pulses per revolution. These pulses can be produced me-

chanically, magnetically, or optically. The rotation rate can

be determined by counting the number of pulses in a given

interval or by timing the duration of a single pulse. 2 Thus

the minimum response time is estimated by

1

‘2=G
(72)

where N is the number of pulses per revolution.

21n practice, the duration of several pulses would have to be averaged
to obtain a satisfactory result, The durat]on of a single pulse cm be
considered to be the minimum response time of an ideal dewce.
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Fig. 5. Comparison of tachometer minimum response times. T1and z
were calculated from (71) and (72) respectively, with M = 80 and

N = 5000. The magnetostatic wave response is based on propagation

around a disk with A = 3 cmz, U80 = 2.57 x 107 cm/s, and q =1.

In contrast to the above devices, the minimulm response

time of the magnetostatic wave device does not vary with

rotation rate but is determined by the time required for

energy to propagate thorugh the device (i.e., the group

delay). For the parameters in the previous numerical esti-

mates, the response time would be about 400 ns or less.

Estimated minimum response times for conventional

analog (de) and digital tachometers as well as for the

proposed magnetostatic wave device are compared in Fig.

5. (In practice, all the devices may require additional

averaging to obtain the desired measurement accuracy.)

The magnetostatic wave device has the potential for be-

ing significantly faster for rotation rates less than about

1000 rev/s (60 000 rpm) for the particular parameters

used. Such a device could contribute significantly to the

stability of high-performance systems where high speed

control is paramount .3 Orientation-dependent effects from

such things as mechanical wobble and magnetocrystalline

anisotropy could, however, prevent this advantage from

being realized [18], [19]. If the propagation path does not

involve the entire circumference, then orientation-depen-

dent effects will appear as different portions of the film are

rotated into the propagation path. The effects can be due

to changes in crystal orientation or to inhomogeneities in

the film. It may be possible to minimize these effects by

allowing the waves to propagate completely around the

disk (q= 1). The phase shift should then not depend on

orientation since no new portions of the film are brought

into the path as the film is rotated.

VI. ABSOLUTE ROTATION RATE SENSING

To measure absolute rotation rates, an interferometer is

needed in which electromagnetic waves propagate in oppo-

site directions around a ring. Owing to the Sagnac effect

[20], there will be a phase difference between the two

30ther factors such as the speed of the controller also affect system

stabitity. The new device would therefore be most important for systems
where the tachometers are the limiting factors.

+:

~
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c?

(b)

Fig. 6. Geometry for analyzing absolute rotation rate
of CW wave. (b) Path of CCW wave.
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sensor. (a) Path

waves proportional to the rotation rate of the interferome-

ter. Just as in the case of the Fresnel–Fizeau coefficient,

the Sagnac effect can be described in terms of phase and

group velocities rather than indices of refraction.

Referring to Fig. 6, consider a disk of radius R rotating

with angular rate Q containing waves propagating in both

the clockwise (CW) and counterclockwise (CCW) direc-

tions. As before, we assume the energy is confined to a

narrow region near the radius of the disk. In the laboratory

(nonrotating) frame, the wavenumber of the CW wave is

& – IARIIand the wavenumber of the CCW wave is & +

lA~l, where PO is the wavenumber in a stationary medium.
After traveling around the ring and returning to the point

at which they started, the phase shifts of the CW and

CCW waves are

@cw= [Do– IAPI][27R + Asl] (73)

I&cw= [Be+ lAPl][2T~ – A~21. (74)

The phase difference between the two paths to lowest

order in V/c is

A@=po[Asl+ As2]–41Ap17rR. (75)

Since the ratio of the distances traveled by two objects in a

time t is equal to the ratio of their velocities, AS’I and AS2
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are approximated

The definition of

to lowest order by

ASI = ASZ = ‘2TR.
Ugo

(76)

a~~ in (1) can be used to express A~ in

terms of the medium velocity. The result to lowest order is

[A~] = a,,~OQR/’uO. (77)

Combining (77) and (76) with (75) gives

4&JA
Aq=—————

[1
l–aFF~

Ugo U.
(78)

where A is the area enclosed by the guided wave path.

Substituting (13) for the Fresnel–Fizeau coefficient a~~

and simplifying gives the Sagnac phase shift for an inter-

ferometer with a corotating dispersive medium (i.e., a

dispersive medium rotating with the interferometer):

4tiLlA
A@=T. (79)

This is easily recognized as the Sagnac phase shift in the

absence of a corotating medium. The fact that a corotating

dielectric medium has no effect on the Sagnac phase shift

has been pointed out by several authors [20], [21]. How-

ever, there is disagreement in the literature about the effect

of a corotating magnetic medium. Yildiz and Tang [22]

considered the case of a corotating scalar magnetic medium

and concluded that the free-space phase shift (identical

with (79)) should be multipled by the relative permeability.

In contrast, Anderson and Ryon [23] considered the same

case and concluded that the presence of a corotating scalar

magnetic medium would have no effect on the phase shift.

The results presented here agree with Anderson and Ryon

and, in addition, should be valid for an arbitrary isotropic

or anisotropic magnetic medium provided only that the

phase and group velocities are collinear. To the author’s

knowledge, the disagreement regarding the effect of a

magnetic medium has not been experimentally resolved.

This is because Sagnac interferometers are usually con-

structed for optical frequencies, where magnetic effects are

negligible. A microwave measurement using magnetostatic

waves should make it possible to distinguish between the

competing theories, however, owing to a large effective

permeability.4

Newburgh et al. [1], have argued that an interferometer
using magnetostatic surface waves could not be used to

detect absolute rotations because of the way in which the

wave velocity depends on the velocity of the medium.

Indeed, if the magnetostatic form for a~~ (eq. (69)) is

substituted into (78) the Sagnac phase shift vanishes. Rig-

orously speaking, however, magnetostatic waves are ex-

traordinary electromagnetic waves and do exhibit the

Sagnac effect when the correct form for a~~ is used. An

optical interferometer is still preferable from a practical

standpoint, however, because the large difference between

‘The possibihty of using microwave measurements to resolve this Issue
has also been pointed out by Post [24].

microwave and optical frequencies results in optical phase

shifts that are larger by four to five orders of magnitude

than a microwave interferometer of the same area.

VII. SUMMARY AND CONCLUSIONS

The problem of waves propagating in moving ferrites

has been considered from several viewpoints. First, the

Fresnel–Fizeau drag coefficient was obtained for the case

of a general anisotropic dispersive medium provided only

that the phase and group velocities are collinear. The result

was expressed in terms of phase and group velocities

rather than an index of refraction to emphasize that its

validity is not limited to optical frequencies.

Next, a first-order field theory for electromagnetic waves

in moving ferrites was presented. The dispersion relation

for nonuniform plane waves in an infinite medium was

first derived, then applied to the boundary value problem

of guided waves in a moving ferrite film. The magneto-

static limit was then extracted and shown to be in excellent

agreement with the full electromagnetic theory. The domi-

nant effect of the motion is found to be the Doppler-shifted

frequency observed in the moving frame. This gives rise to

an anomalously large shift in wavenumber owing to the

dispersive nature of the ferrite medium. Because of the

large effect, it is suggested that a moving medium experi-

ment using magnetostatic waves could be used to distin-

guish between various competing forms for the dispersion

term in the Fresnel–Fizeau coefficient.

Finally, the results of the field theory are applied to

relative and absolute rotation rate sensing. In both appli-

cations the waves are considered to be confined to a

narrow region near the edge of a rotating ferrite thin film.

The large Fresnel–Fizeau coefficient suggests that magne-

tostatic waves could be used to measure relative rotation

rates. Since the phase shift would be established in the

time required to propagate around the disk, the response

time could be significantly shorter than conventional

tachometers. Although it should be possible, in principle,

to construct an absolute rotation rate sensor using magne-

tostatic waves (or, more precisely, magnetic polaritons),

the magnitude of the Sagnac effect is the same for magne-

tostatic waves as for ordinary electromagnetic waves with

the same frequency. Since the magnitude of the Sagnac

phase shift is proportional to frequency, optical interfer-

ometers are still preferable because of the much higher

frequency.

APPENDIX

In general, the dispersion relation

waves can be written in the form

F(ti,p,v)=o.

for magnetostatic

(Al)

The solution to this equation can be approximated by a

Taylor series for small K

13(u, v)= B(@,o)+: v. (A2)
V=o
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Thus [11]

Afl=~ v.
V=o

(A3) [12]

The quantity 8~/i3 V can be obtained from (Al) by implicit ,Igl

differentiation:

8/3 aF/a v
._—.—.—=__
(3V aF/afi “

(A4) “4]

To evaluate dF/d V, we now make the assumption that the 1151

dependence of F on d and V is of the form F(ti, V) =

F(ti – ~V). As discussed in Section IV, this is valid for all [16]

magnetostatic modes propagating parallel to the motion of

the medium. Thus
[17]

6’F dF da’ [18]

_— —

dv– ad av
=-B: (A5]

[19]
where u’= u –/3 V. Substituting this result into (A4) and

simplifying gives

ap afi ap au fi
—=
av

-B~=-Pj---j=--- (A6) ~~]
‘g

Substituting this result into (A3) yields (68), as desired. [22]
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